
1

Blackboard - Advancing Autonomous Target
Detection and Mapping: Development of Integrated

Software Systems for Monocular Depth Sensing
and Dynamic Target Labeling

Brandon C. Colelough,
School of Engineering and Information Technology, University of New South Wales, Australia

Abstract—This study aimed to implement a system capable
of autonomously detecting sheep targets and representing them
on a 2D occupancy map, with the ultimate goal of facilitating
autonomous shepherding on a UxV platform. This paper details
the development of the Blackboard system, a software solution de-
signed for autonomous target detection and mapping. Employing
Python and C programming languages, the Blackboard system
integrates monocular depth sensing with autonomous target
detection to produce comprehensive depth and target maps.
These maps are merged to generate a detailed 2D bird’s-eye
view of the operational area, captured from an elevated camera
perspective. A distinctive feature of the Blackboard system is
its modular framework, which allows for seamless updates or
replacements of its depth sensing and target detection modules.

I. INTRODUCTION

The primary objective of this research was to develop an
integrated target mapping software that amalgamates spatial
target data from one module with depth information from
another. This integration facilitates the generation of a com-
prehensive 2D representation, termed the ”Blackboard view,”
of targets within a specified area. This view is derived from
data captured by an elevated camera feed. The core software of
this project, named ”Blackboard,” was specifically engineered
to enable efficient interaction between two distinct artificial
intelligence modules, thereby achieving the intended mapping
task. In terms of depth perception, the project utilized a
commercial off-the-shelf (COTS) solution that incorporates
the ”High-Quality Monocular Depth Estimation via Transfer
Learning” model. developed by Alhashim and Wonka [1].
Furthermore, the YOLO package [2] was utilised for object
detection and the incorporation of these two packages into the
Blackboard solution is a key aspect of the research, playing
a vital role in enhancing the overall functionality and efficacy
of the target mapping system.

II. LITERATURE REVIEW

A. Monocular Depth Sensing

Most common hardware-intensive depth sensing modules
will utilise a stereo ocular setup (dual camera) or some sort of
Lidar/radar system to accurately sense depth. More software-
intensive modules that utilise a singular camera measure
the translational and rotational data between different frames

of a video stream to predict depth. The monocular (single
camera) depth sensing module used takes an entirely different
approach to predicting depth. The High-Quality Monocular
Depth Estimation via Transfer Learning developed by Ibra-
heem Alhashim and Peter Wonka utilises two CNNs in an
encoder-decoder setup to leverage transfer learning for depth
predictions [1]. This depth sensing model was written in
Python and as such the encoder and truncated decoder shown
was an implementation of a dense-net 169 CNN with regular
skip connections. The model is trained with single frames as
the input and ground truth data (from any reputable source
e.g. radar, Kinect IR etc.). The model that was used as a
module in the Blackboard program developed was trained on
generic, readily available data found in the KITTI and NYU
V2 depth data set. As such, this data was not optimised for
the detection of sheep in a field. This led to inaccuracies in
the depth of data obtained. However, as the main objective
of this project was the generation of software packages these
inaccuracies did not affect the overall success of the project.
As shown in figure 1, this depth estimator uses CNNs with a
structure similar to that used with image processing done by
the target detection neural net. Here It can be seen that the
dense depth team has made use of transfer learning by taking
image classification encoders found in Python and utilising
them in the generation of depth maps. A thought for improving
the overall efficiency of the network found here would be to
take the algorithm used by the dense depth team and modify
the structure of a YOLO CNN to enable the generation of
depth maps with the C-based YOLO module. This would be
a good idea to explore in another project. This may however
prove easier said than done as the dense depth module utilises
libraries specific to Python. The structure and form in which
the dense-net 169 CNN has been used are much the same as
in the image processing techniques from which the CNN has
been transferred and learned. The main difference is found
within the loss function of the network. As stated by [1], the
loss function is given by

L(y, ŷ) = λLdepth(y, ŷ) + Lgrad(y, ŷ) + LSSIM (y, ŷ) (1)

Where y is the ground truth depth map and ŷ is the prediction
depth map, Ldepth gives the difference of their depth values,

https://orcid.org/0000-0001-8389-3403


Lgrad gives the difference of the gradient for their depth values
and LSSIM gives the structural similarity of the ground truth
and prediction depth maps. Explanations for each of these
terms can be found in [1].
This loss function is greatly contrasted to a regular CNN loss
function such as that used in the YOLO framework given by
(Mean squared error):

L(y, ŷ) = MSE =
1

n

n∑
i=1

(y − ŷ)2 (2)

Whilst the basic structure of the CNN is kept the same,
some of its most basic processes (such as the loss function)
have been altered in the process of transfer learning to allow
this conventional image processing CNN to instead produce
depth maps.

B. Languages Used - C, C++, Python, Cython

C is a low-level, general-purpose programming language
that can be used on a wide variety of systems. C has been used
to write operating systems (Windows, MAC/IOS - objective C,
Linux etc.) interpreters (such as the Python interpreter) and
various applications. C++ is an extension of the C language.
C++ is a superset of C. C++ can run most of C code
while C cannot run C++ code. C++ is an object-orientated
programming language and as such supports such features as
polymorphism, encapsulation and inheritance. C is a procedu-
ral language only and as such does not support any of these
features. C++ also provides exception handling and memory
allocation operators whereas C does not. More differences
are listed here [8]. A C or C++ compiler will be able to
generate bytecode directly executable on micro-controllers and
microprocessors and as such is a good choice for any project
looking to embed their program onto a simple system such as
the drone being used for autonomous sheep herding. Python is
an object-orientated, high-level programming level. Python is
an interpreted language in that it needs a program to go from a
high-level language to a form that a compiler can understand.
Most Python interpreters are written in C (as most operating
systems are written in C or a subsidiary of C) but there are
other interpreter options such as Iron Python (based on the
.NET framework) Jython (based on the Java platform) etc.
The CPython (based on C) interpreter is the most efficient as
C is the most universal language and therefore an interpreter
based on this language will be most useful on a range of
operating systems. Cython is an optimising static compiler
for both the Python programming language and the extended
Cython programming language (based on Pyrex) [5]. Cython
was designed to allow the user to call C or C++ code from
Python natively and interact with C or C++ code from the
Python interface. In this project, the Cython API along with the
Python interpreter was taken and used to call Python modules
from C and C++ code. pyx header files and C++ structures
were used to interact over the two languages to create a bridge
to pass data from a Python module back to a C++ module to
be handed back to a C module.

III. METHODOLOGY

The objective of this research was to develop an integrated
software system capable of determining the position of targets
in three-dimensional space and rendering these positions onto
a two-dimensional ”bird’s eye view” Blackboard. This system
integrates a target detection module with a monocular depth
sensing module. The YOLO framework [2] was employed for
target detection due to its previous optimization for specific
target types [9]. Concurrently, the dense-depth package was
chosen for monocular depth sensing [1] to generate depth
prediction heat maps utilising only a single frame as an input
to the module’s neural network. The blackboard system was
developed for integration with autonomous drones, aligning
with the broader mission objectives. The architecture was
designed with modularity in mind, allowing for the depth-
sensing and target-detection components to be replaced or
upgraded as needed.

A. Target Detection

For target detection, the YOLO framework was utilized.
Modifications were made to the detector, image, and demo
modules of YOLO’s source code to enable the transfer of
detection data. These alterations were confined to the frame-
work’s higher-level functionalities, without changing the core
structure or the target detection capabilities of the YOLO
CNN.

B. Monocular Depth Sensing

The high-quality monocular depth estimation package by
[1] was implemented for depth sensing. This package utilises
transfer learning and an encoder-decoder architecture to pro-
duce depth estimation heat maps of an image. A Python-based
inpainting method for depth estimation was developed and
integrated into the package. Due to the absence of a target-
specific depth dataset, a combined dataset from NYU and
KITTI, which closely matched the environmental and target
parameters, was used for initial training. Examples of the depth
maps produced are presented in figure 2.

C. An Integrated System

The integrated system initialises both the models for the
C-written YOLO package and Python Python-written dense-
depth package. The primary Blackboard module will load the
models for these components into memory to quickly access
them. The primary Blackboard module will then process a
given image through the detection module passing through
the C model and receiving back the target positional data. The
primary Blackboard module will then process the same given
image through the depth sensing module passing through the
Python model and receiving back a depth map in the form
of a 4D depth array. Once the target data and depth data
have been received, the main Blackboard module will then
determine the target’s depth based on its position in the depth
map. This information is then processed to allow for the targets
to be drawn. The target was then drawn onto the blackboard

Page 2



Fig. 1: The encoder-decoder setup used within this model. Pictured in red is the CNN used as an encoder. The decoder is a
truncated version of the same CNN. Pictured in blue is an example of the bi-linear up sampling used in conjunction with the
truncated CNN decoder.

Fig. 2: Shown on the right is the input. Shown on the left
is the associated depth map processed by the depth sensing
module

occupancy grid by finding the centre of the target through the
following function:

Xmid =
Xleft + Twidth

2
(3)

Ymid =
Ytop + Theight

2
(4)

Note that Xleft, Ytop, Twidth and Theight were all given
by the target detection module. The depth was then read from
the 4D array using these centre positions of the targets. The
normalisation of the depth concerning the upper and lower
bounds of the depth map as well as the window in which the
frame is being drawn was done by the equation:

DN =
(BWmax −BWmin)× (TD −Dmin)

Dmax −Dmin
+BWmin (5)

Fig. 3: Setting a frame of reference for depth

where
• DN is depth normalized,
• BWmax is board width maximum,
• BWmin is board width minimum,
• TD is target depth,
• Dmin is depth minimum, and
• Dmax is depth maximum.
depthNorm and Xmid were then taken as the centre of the

target on the Blackboard. The size of the targets was then
normalised by the use of the get target dims function. This
function would fit a found target into one of three categories,
small, medium or large. The original iteration of this function
used only the special dimensions of the targets and the target
depth to determine what size the target should present on
the Blackboard. It was apparent however that this would not
functionally with the depth estimations being provided by the
dense-depth module. The depth estimation given by the depth

Page 3



module usually falls between 1-2 metres. This was most likely
a result of depth truth data from the training data sets being
collected by a Microsoft Kinect device which has a maximum
range of 3.5m. To overcome this issue, an updated depth
estimate was refined which made use of the size of each target
seen on the frame to get a relative size ratio of each target.
The height and depth values of each target were collated from
the monocular depth sensing module. These estimates were
then sorted into an array and the standard deviation of the
data set was then determined. If the difference between each
target and the median target was greater than the standard
deviation then the target was assigned a small value. Similarly,
if the difference was less than the negative of the standard
deviation then that target was assigned a large value. The
maximum and minimum depth values were then used to set
a frame of reference for drawing in targets with relation to
their y-coordinate with seen depth. The depth value array was
traversed to determine the minimum and maximum distances
produced by a depth map. A visual representation of how this
was used as a frame of reference is shown in Figure 3.

Fig. 4: The high-level function is highlighted in red and the
data being processed is delineated within distinct boxes. Ad-
ditionally, the specific module in use is identified in grey text.
The final box in the sequence represents the amalgamation of
required data to achieve the intended output

D. Using Cython to integrate C with Python modules

The majority of the modules written for the main project
were to allow for the integration of the Python dense-depth
package to integrate with the main module of the main package
as well as the YOLO framework. Since the depth sensing
module used was written in Python and the main module and
YOLO were written in C a bridging program was needed to
allow for the transfer of data from Python to C and C to
Python. Figure 4 shows the overarching design of the system
and refers to this integration of languages. The intricacies of
these modules which allowed for the bridging between Python

and C are discussed below in the modules and functionality
section. Note that the loading of both models only occurs once
and each model can be accessed at any time from memory.

IV. RESULTS

Figures 5-12 show the full system operations across a range
of tests. On the left, the object detection output from the
YOLO package is displayed. Next, in the centre, a dense-
depth depth map prediction is shown for the same input
image. Lastly, on the right is shown the Blackboard ”bird eye
view” drawing of targets on a 2D occupancy grid with the
depth values produced by a dense-depth depth map shown to
the side. Table 1 shows The average time complexity of the
blackboard submodules. It can be observed in Table 1 that
the modules written in C are (of course) much faster than
the dense-depth modules written in Python. Of significance is
that the Python dense depth model takes 2.5 seconds to make
a prediction and the Py-C bridging code takes 1 second to
convert the 4D depth prediction data.

TABLE I: Largest time complexities in main software package

Modules time complexity(ms)

drawBoard 49.8502
load model(DenseDepth) 18636.84
getDepthData(DenseDepth) 2578.8
load model(YOLO) 2531.9
YOLO detector 22
getDepthDataV2(C) 3521.093
Blackboard (total/Frame) 3754.12

V. DISCUSSION

A. Time complexity

As observed in Table 1, loading the dense-depth module
takes almost 9x as long as loading the YOLO target detection
module. Whilst this is interesting to note it is unimportant as
the model for both only has to be loaded once as can be seen
in figure ??. Whilst an extended loading time on startup is
not ideal it does not affect how effective the overall system
is. What is important is the processing time seen thereafter.
The processing time of both C modules is shown to be
roughly 50 milliseconds for drawing the targets on Blackboard
and roughly 22 milliseconds for target detection processing
completed by YOLO. This puts the overall processing speed
for both C modules at roughly 70 milliseconds per frame. I
use the term roughly here as the processing speed is affected
by other contributing factors such as background processes
being handled by the CPU etc. so it is difficult to obtain an
exact time on processing speed without a larger sample set to
draw upon. The majority of the processing speed for a frame
is however shown to be the dense-depth estimation and data
conversion process. The python dense-depth module takes over
2.5 seconds to process a single frame into a depth map and
the data conversion process takes over a second. This puts the
overall time to process a single frame from a still image to a
Blackboard of targets at over 3.5 seconds. It can therefore be

Page 4



Fig. 5: Shown here is a good example of how the program can function given a semi-accurate depth map. The depth map
produced a relatively good reading for the target which was about half of the range of the frame. This paired with the size
normalisation produced a good representation of where the target should be placed.

Fig. 6: It can be observed in this depth map that the targets have skewed the gradient of the image depth. This caused the
target depth estimation to come up short causing the target position to be more forward than it should.

Fig. 7: The dense-depth module has picked up here that the targets are in the foreground. The resulting Blackboard frame is
a good representation of where the targets would be given this image. It can also be seen that the size-normalisation module
has correctly differentiated between the sizes of the three targets.

seen that the limiting factor for data processing is the python
dense-depth module. Even with multi-threading processes for
target detection and depth map estimation the processing time
for a single frame would still be over 3.5 seconds.

B. Depth estimation accuracy

At current the depth estimation model consistently pushes
the depth estimation for targets into the foreground. Most
prominent in figure 9 and figure 10 but seen in all depth
maps produced, it can be observed that the targets are out-
lined and brought directly to the front. This is due to the
network not yet being trained on sheep data and is most likely
caused by the colour gradient differentiation between targets
and background colour information. The dense-depth model
is much more accurate at characterising the depth gradient
for background information. This is observed in figures 8-
11 where the background has been effectively characterised.
Figure 12 shows another good differentiation between near and
far on the background information depth map but is disrupted
by a target cluster in the top middle section. This target cluster

disrupts the depth map estimation and places a large patch of
foreground where it should not be. It can therefore be observed
that the dense-depth model works well for estimating the depth
map for the background information but does not effectively
characterise the depth of targets.

C. Current depth estimation limitations

It was observed that the depth range always fell between
0.9 and 2.5 meters. This was due to the training information
used to train the dense-depth module for depth estimation. A
combination of the KITTI and NYU V2 data sets was used
for depth estimation training. These data sets relied on ground
truth boxes collected by a Microsoft Kinect. The maximum
effective range of a Microsoft Kinect is 3.5 meters so the
upper limit of the depth estimation for this model will be 3.5
meters.

D. Target size normalisation

Shown well in figure 7 is an example of target size differen-
tiation. This figure shows two small targets on either side of the

Page 5



Fig. 8: The depth map has placed targets 2,3 and 4 too close. The gradient of the foreground is mapped out well though and
places the rest of the targets in a relatively correct position.

Fig. 9: The dense-depth module has misinterpreted the targets in this image for foreground gradients. This resulted in many of
the target depth estimations being too close causing local clustering in the foreground as opposed to the background where the
clustering should occur. The size normalisation module has also incorrectly determined the relative size of two of the targets
at the front left of the image.

Fig. 10: The dense-depth module has again misinterpreted the rapid colour change brought upon by the targets as the foreground.
This pushed all the detected targets into the foreground.

Fig. 11: The dense-depth module has much more effectively characterised the depth map of this image. A local cluster of
sheep can be seen in the top right corner as well as a sparse cluster in the bottom left corner.

large target which is also observed in the original image shown
to the left of the Blackboard. Figures 8, 10 and 11 show good
target size normalisation with many targets. It is shown here
that all the targets are actually the same size as they should be.
It can however be observed that there are still bugs in the size
normalisation module as shown in figures 9 and 12. Figure
9 mischaracterises two targets at the front of the frame and
figure 12 mischaracterises the size of a target that is half cut
out of the frame. The error in figure 9 is most likely due to the
inaccuracy of in-depth data which was a contributing factor in

the size normalisation algorithm and the error in figure 12 is
due to a function added that tries to account for the positioning
of a target (front or side view).

E. The Blackboard System in use

The Blackboard package processes a frame producing both
target information and a depth map. The YOLO module
produces high precision information whilst the depth-sense
module provides low precision. This information is then sent
to the Blackboard program and is used to draw targets. Figure

Page 6



Fig. 12: The dense-depth module has incorrectly characterised the top-middle sector of this image as foreground. This has
pushed all of the targets detected close to the middle closer than they should be.

9 shows well that the x and y coordinates for the middle of a
target are accurately represented. Here it is seen that the target
is shown to the far left of the screen which is represented in
the Blackboard printout as well. The target is also observed at
about half the depth range which is also accurately represented
on the Blackboard printout. Extrapolating this further to many
targets, figure 11 shows well that the program functions
accurately and gives a good representation of targets when
the depth map is semi-accurate. Local clustering of targets
can be seen in the top right and bottom left quadrants. The
size normalisation of targets is also shown well here.

VI. DISCUSSION

A. Time complexity

At current the program works well and transitions smoothly
to produce a Blackboard rendition of a static frame/image. For
this to be extended to a non-static reference like a video, major
changes in the program will need to be made. For a video
stream to seem continuous and smooth it needs to be presented
at a minimum of 20 fps [7]. The YOLO framework for
example can produce detections at 45 fps. The time needed by
the main software package to produce one single Blackboard
printout is 3.5 seconds. As discussed earlier the limiting factor
for this processing time is the creation of depth maps from
the dense-depth module. I believe this is due to the Python
program interfacing with C modules. The Python interpreter
is needed to do this and as such the program is slow. This
could be optimised by Cythonising the Python modules further
to try and convert them directly to C. It is my opinion that
this will not work well however as the AI Python models
used are Python-specific and as such trying to directly convert
them to C will most likely cause performance issues further
down the track. The dense depth model utilises two CNNs
to make predictions. If the YOLO CNNs were retrofitted for
transfer learning to enable them to be used as the CNNs for
the depth map production process then the processing time of
depth map production from a C module should be roughly 40
milliseconds. If the Blackboard module can be optimised to
allow no longer than 5 milliseconds of processing time and
multi-threading was used to enable the target detection and
depth map predictions to occur at the same time then the time
complexity of the overall program could be brought down to
49 milliseconds(depth map production as limiting factor and
Blackboard program processing time). This would allow the
main software package to process video feed at 20 fps. Whilst
this is still not ideal it is much better than the 0.3 fps the

current package works at. Therefore, my recommendation is
to rewrite the dense-depth algorithm in C using the YOLO
CNNs as a basis for the module. This would also interface
with the main program much better.

B. Depth estimation

The depth estimations observed by the dense-depth module
were of poor accuracy as they were not yet trained on the
specified targets (sheep). We do not however believe that
taking the current method of collecting a data set will be
effective for training this model though. Whilst the 3.5-meter
range of the Kinect is more than effective for the autonomous
car environment the data sets were collected for, this is not
suitable for the depth target estimation environment it is now
needed. The targets can be regularly observed at much further
than 3.5 meters and as such a new method of collecting depth
truth information is needed. A new device will need to be
created that can perform the functionality of the Microsoft
Kinect at distances much larger than 3.5 meters. The limiting
factor for range with target detection is the camera quality
used. The target detection CNN can be scaled up to take
a very high-quality image. A high-quality image will show
more accurate targets and as such the YOLO framework will
be able to more accurately detect targets at a larger distance
with higher-quality images. The limiting factor for the range
of depth estimation is however the data set it is trained on.
If the maximum range of the data set is 3.5 meters then
the maximum depth estimation will be 3.5 meters (as was
observed). Therefore, an overall limiting factor for the range
of this program will be the range of the data set which tracks
back to the range of the collection device used to obtain the
ground truth data for the target range used for the training of
the depth estimation model. This should be taken into account
when designing the device that will be used for collecting this
data set.

VII. CONCLUSION

In this research, an integrated software system was devel-
oped, capable of processing an elevated static feed for target
detection and depth assessment. The system then utilized this
information to construct a 2D ”bird’s eye view” of identified
targets on a Blackboard module. While the software success-
fully met all functional requirements, it was observed that
the time complexity and depth accuracy metrics did not align
with the desired standards. Moving forward, we recommend

Page 7



a strategic revision of the dense-depth model by transition-
ing its development to C. This modification could enhance
the efficiency and accuracy of the depth-sensing component.
Additionally, careful consideration should be given to the
selection of the device used to collect ground truth data for the
training dataset of the depth estimation network, as this has
significant implications for the overall accuracy of the model.
The software also included a feature allowing users to interact
with predictions made by a trained YOLO target detection
model on previously unseen images. This functionality enabled
users to save these predictions or manually draw bounding
boxes around targets. The intent behind this feature was to
facilitate the creation of a dynamic labelling program, signif-
icantly reducing the time required for labelling images in the
training of YOLO models. This aspect of the software presents
a promising direction for future enhancements, particularly in
improving the efficiency of model training processes.

REFERENCES

[1] Alhashim, A. Wonka, P. (2018). High Quality Monocular Depth Es-
timation via Transfer Learning. Saudi Arabia: KAUST. Available at:
https://arxiv.org/pdf/1812.11941.pdf (Accessed: 20 July 2019).

[2] Redmon, J. Farhadi, A. (2018) YOLOv3: An Incremental Im-
provement. Washington: University of Washington. Available at:
https://pjreddie.com/media/files/papers/YOLOv3.pdf (Accessed: 14 April
2019).

[3] Alhashim, A. Wonka, P. (2019). High Quality Monocular Depth Es-
timation via Transfer Learning GitHub Code. Saudi Arabia: KAUST.
Available at: https://github.com/ialhashim/DenseDepth (Accessed: 20 July
2019).

[4] Wojna, Z. Ferrari, V. Guadarrama, S. Silberman, N. Chen, L.Fathi, S.
Uijlings, J. (2019). The Devil is in the Decoder: Classification, Regression
and GANs. https://arxiv.org/pdf/1707.05847.pdf(Accessed: 20 July 2019).

[5] Cython Documentation. Available at: https://cython.org/ (Accessed: 20
July 2019).

[6] Krishan, K. (2016). Difference between C and C++. Available at:
http://cs-fundamentals.com/tech-interview/c/difference-between-c-and-
cpp.php (Accessed: 20 July 2019).

[7] CARD, S. K., MORAN, T. P. AND NEWELL, A. (1983). The psychology
of human-computer interaction (Accessed: 25 October 2019).

[8] Krishan, K. (2016). Difference between C and C++. Available at:
http://cs-fundamentals.com/tech-interview/c/difference-between-c-and-
cpp.php (Accessed: 20 July 2019).

[9] Colelough, B. (2019). Optimizing Data Diversity for Accurate Prediction
Models: Insights from a Multi-Class Sheep Image Data-Set Analysis
towards Autonomous Shepherding.

Page 8


